The 5th Visualization Workshop, 2022/2/24 (Thu) Online, Sponsored by Visualization Society of Japan

Fundamental Study on Development of Microchip-laser Induced Breakdown Spectroscopy System for Remote Analysis

Zeliang Zhang, Takeshi Moriya, Naruki Shoji, Hideharu Takahashi, Hiroshige Kikura

1. Background

1.1 Decommissioning of Fukushima Daiichi Nuclear Power Plant (FDNPP)

- The **decommissioning** of FDNPP is in processing, in which the information of **fuel debris** is important
- The optical measurement is the main method of provide the second detecting internal of reactors at present robot investigation^[1]
- Internal condition by
- The information of fuel debris are analysis off-site
- The *visualization* of fuel debris element and shape information is needed for in-situ investigation

1.2 In-situ measurement for shape reconstruction and element analysis

Ultrasound techniques has a potential for **in-situ** fuel debris **location** and **shape** investigation The method for **in-situ** fuel debris **element composition analysis** is still lacking

4. Parametric Study

4.1 Output study of LD and microchip laser

- The influence of PLS current and pulse duration time to Main parameters that the system are **investigated**
- influence output The output of microchip laser and LD are recorded respectively

LD maximum output: **49.9mJ**; Microchip laser maximum output: 2.21mJ; **Output difference** is great between LD and microchip laser

4.2 Burst mode study of microchip laser

The excitation mode study of microchip laser were conducted

LIBS element analysis is noted

Laser Induced Breakdown Spectroscopy (LIBS) is a method for sample composition and content of chemical elements analyzing

- Laser is reliable in high-radiation and low light level area LIBS is **real-time** and high **accuracy**, has a great potential to be applied in decommissioning
- LIBS has wide element coverage

How to reomotely control the LIBS measurement?

- In this study, the **fiber optic microchip LIBS system** is proposed based on the protection of the lifetime of the equipment and the sustainability of the research
- The ultrasonic measurement will be integrated with LIBS to conduct the optimal measurement distance measurement, element composition, and shape reconstruction

Important parameters of microchip LIBS:

- Maximum output: 2.21mJ;
- Maximum output burst number: 17;
- Minimum output: 0.078mJ;
- The microchip LIBS system is work under multi-burst mode;

Waveform is recording Output recording by by oscilloscope energy detector

5. Integrated Experiment by LIBS and Ultrasonic measurement

Scanning area (mm²)

7700

2. Objective

Development of Microchip-laser Induced Breakdown Spectroscopy System for Remote Analysis

- **Development** of LIBS system (fiber optic Microchip LIBS) **system** is setup);
- **Parametric** and **excitation mode** study of LIBS system; 2.
- Integration experiment of LIBS and air-coupled ultrasonic 3. measurement (Visualization of the simulated fuel debris shape and element information)

3. Construction of LIBS system

3.1 Construction of microchip LIBS system

- The microchip-LIBS (MLIBS) system contains:
- 1. Beam guiding part (Cage system)
- 2. Laser emitting part (Laser diode pump and microchip laser)
- 3. Observing & analyzing part (Oscillo., etc.)

- Nd:YAG laser crystal is selected as the microchip laser, (PLSU150, Unitec, Inc.) laser diode pump source is selected. A cage system contains lenses, filters, and mirrors is built up. Optical fiber is applied for remote analysis

Model of each part in microchip LIBS system

Number (L: lens, Number: holder, filter, etc.)	Model (Thorlabs)
1	CP02/M, SM1SMA
L1; ②	C230TMD-B; CP1M09/M
L2; ②	C330TMD-B; CP1M09/M
3	SM1Z, SM1AD5
L3; ④	LC2969-C; CPN06
(5)	NF808-34, DCP1A
L4;	LA1560-C; CP14/M
L5; ⑦	LA1540-YAG; CP14/M
8	DMLP950, CP360R/M
9	SM1PD2A
10	RC08SMA-F01, SM1A6, CP30

Diagram of microchip LIBS system

6. Conclusion

scan X-Y plane while keeping Z=10.2mm;

- Fiber optic Microchip-LIBS system was constructed
- Parametric study of LIBS system were conducted
- Visualization of the integrated experiment result by LIBS and ultrasonic is achieved

[1] Tokyo Electric Power Company Holdings, Inc, "The Status of Fuel Debris Retrieval" (2020). http://www.tepco.co.jp/nu/fukushima-np/handouts/2017/images1/handouts_170327_14-j.pdf (Reference date: August 24. 2021) [2] Applied Spectra, "What is LIBS", https://appliedspectra.com/technology/libs.html (Reference date: Septemer 2, 2021)