立体図形の構造理解における 対話的切断・観察用MRシステム

大滝 勇輝(中央大学大学院理工学研究科情報工学専攻 修士前期課程 2年) 牧野 光則(中央大学理工学部情報工学科 教授)

1.研究背景

1.1 空間図形の単元

- ・平面上の立体図形に対して、描かれていない辺や頂点を補いつつ、 三次元形状を想像する必要がある.
- ・ある図形に対する適切な断面を<u>推測する</u>必要がある.

→三次元空間上で思考する必要があり,**空間認識能力の具備**が求められる.

1.2 テスト調査

「空間図形」を学んだ中学生に対する切断面を問う問題10問[1]において<mark>,</mark> 正答率最大76%,最小0%,平均37%の結果になり,

見かけの図形にだまされやすいと報告があった.

→平面に描かれた立体図形を**三次元に落とし込む**ことが難しい.

1.3 従来手法

3教材 ②電子端末 ①紙媒体

(教科書,参考書) (タブレット,スマートフォン) (プラスチック,紙素材の模型)

	①紙媒体	②電子端末	③教材
自由な操作	×	0	0
自由な切断	×	0	\triangle
任意な角度からの観察	×	0	0
三次元的な観察	×	×	0
準備の容易さ	0	0	×

→従来手法には問題点があり,学習法に対し**解決する必要**がある.

2.研究目的·目標

目的

中学生に対する立体図形の構造理解の向上

目標

立体図形に対して対話的に任意な角度の切断や観察を 可能にする**学習用システムを開発**し、

ユーザテストにより本システムの**有用性**を検証すること

3.システム概要

|複合現実感(MR)は仮想環境と現実環境を融合させる概念[2]

- ・立体図形に見立てた仮想物体を作り出すことは容易
- ・現実世界に重畳表示させた図形に対して干渉可能
- ・移動範囲と手の拘束なく、システム操作可能

(HoloLens 2)

3.2 システム詳細

開発プラットフォーム:Unity(MRTK)

配置オブジェクト:Blenderで作成した立体図形(単元範囲内)

システム説明と各種ボタン

切断モード時の切断用オブジェクト

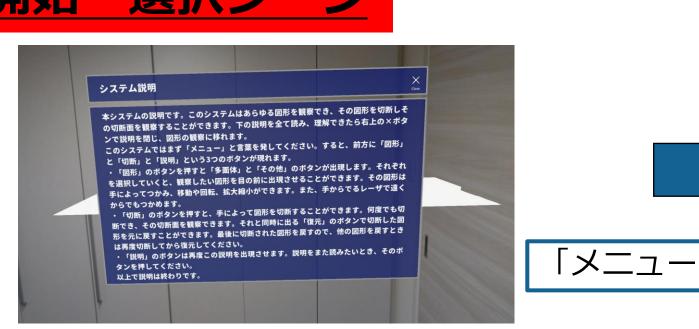
音声認識と音響

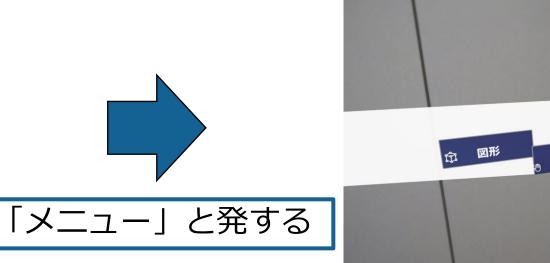
く操作>

- 平行移動,回転,拡大縮小
- 重力切り替えにより。 手操作なしの観察

<切断>

- ・手に追尾する長方形型の 透明オブジェクトにより切断
- ・切断時の音響と切断面に色を 付与した視覚的・聴覚的効果
- ・物体の復元,複数回の切断可能


システム開始 メニュー画面表示 図形を表示させるか 図形の切断・観察 図形選択・消去 図形を復元するか 図形の観察 システムを終了するか (システムの流れ) システム終了


システムの特徴

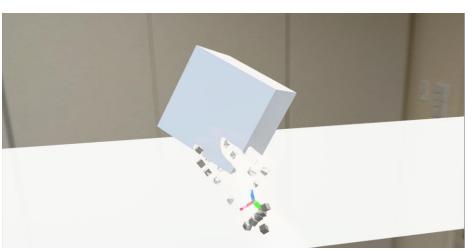
- ・MRにより、三次元空間上でユーザの意のままに操作や切断可能
- ・立体図形を簡単に表示できが切断した図形の復元も可能
- ・視覚・聴覚を刺激する学習システムの構築

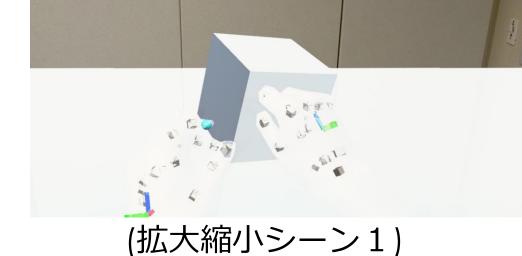
4.システム実装

開始・選択シーン

(開始シーン)

(メニューシーン)

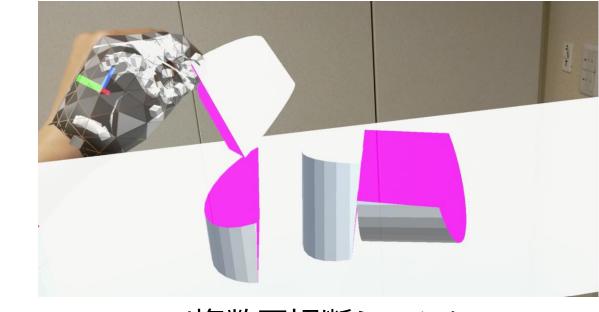



□正八面体 □正八面体 □正十二面体 □正十六面体 □正十六面体

(図形の種類選択シーン)

(図形選択シーン)

図形操作シーン



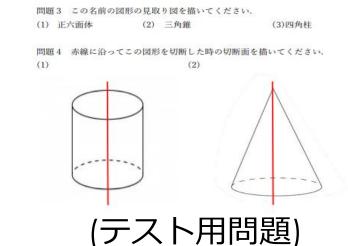
(平行移動・回転シーン)

(拡大縮小シーン2)

図形切断シーン

(複数回切断シーン)

5.ユーザ実験


被験者:「空間図形」の単元を学習済みの中学生8名

場所:直接日光が差し込まない屋内

流れ:事前アンケート・テスト→システム検証

→事後アンケート・テスト

備考:立ち座りでの操作,1回の所要時間1時間半程度

結果

	Α	В	C	D	F	F	G	Н
 苦手意識	0	0	0	0	0	×	×	С
構造理解の得意さ	×	×	×	×	×	0	0	×
紙媒体の体験	0	0	0	0	0	0	0	С
電子端末の経験	×	0	×	×	0	×	×	×
教材の経験	×	×	×	0	×	0	×	×
XRの経験	×	×	×	×	×	×	0	×
検証前の点数	1	3	4	3	4	5	6	4
検証後の点数	7	9	9	7	9	10	9	8

(ユーザの属性とテスト結果)

	低◆			▶高	
	1	2	3	4	
1.疲労感はあったか	6	2	0	0	
2.手の反応に違和感はあったか	5	3	0	0	
3.図形の操作はやりやすいか	0	1	4	3	
4.図形の切断はやりやすいか	0	0	0	8	
5.図形の種類に問題はあったか	6	2	0	0	
6.図形の出現に手間はあったか	7	1	0	0	
7.面白さを感じたか	0	0	1	7	
8.立体図形の構造を理解できたか	0	0	0	8	
9.今後の学習に利用したいか	0	0	0	8	
(事後アンケート)					

・全被験者のテスト点数は検証後<u>、上昇しており</u>、立体図形の学習を得意とするFとGは満点近い。 ・操作や切断の機能は扱いやすく,立体図形の構造を理解しやすいとの<u>声が多かった</u>.加えて, システム自体の疲労感や学習における手間もないため、学習システムとしてこれからも 利用していきたいと答えた人数が多かったと考える.

6.結論

考察

本研究では,立体図形の任意な角度の**切断や観察**を可能にするシステムと MR上で**対話的に学習**できる機能を実装した.

実験結果より,客観的に立体図形の学習への本システムの有効性が示された. 事後アンケートでは他の学習方法と比較した被験者の**主観的な評価**が得られた.

今後の課題

- ・他学年に適応したシステムの拡張
- ・立体図形の理解をより得るために展開や結合,分解といった**他機能の追加**

Reference

[1]岩崎綾乃,青山和裕,辻宏子:"中学生の空間図形の認識に関する研究",

日本科学教育学会研究会,Vol.34,No.3,2019

[2]舘すすむ, 佐藤誠, 廣瀬通孝:"バーチャルリアリティ学", 日本バーチャルリアリティ学会,2011